

II-065 – AVALIAÇÃO DA TOXICIDADE DO RETARDANTE DE CHAMA TRIBUTILFOSFATO APÓS TRATAMENTO POR DIFERENTES PROCESSOS OXIDATIVOS AVANÇADOS

Erik Henrique de Oliveira Marques⁽¹⁾; Ramon Vinícius Santos de Aquino⁽²⁾; Érica Janaína de Moraes Dantas⁽³⁾; Jeferson Botelho Rodrigues⁽⁴⁾; Otidene Rossiter Sá da Rocha⁽⁵⁾

¹Graduando em Engenharia Química. Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE)

²Doutorando em Engenharia Química. Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina (UFSC)

³Doutoranda em Engenharia Química. Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE)

⁴Doutorando em Ciências da Engenharia Ambiental. Departamento de Hidráulica e Saneamento da Universidade de São Paulo (USP)

⁵Professora Associada. Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE).

Endereço⁽¹⁾: Avenida dos Economistas, s/n - Cidade Universitária - Recife - PE - CEP: 50740-590 - Brasil - Tel: (81) 99222-5742 - e-mail: erik.marques@ufpe.br

RESUMO

Neste trabalho, avaliou-se a toxicidade do retardante de chama Tributilfosfato (TBP) antes e após tratamento por Processos Oxidativos Avançados (POAs) Os experimentos de degradação ocorreram em batelada mediante radiação UVC. Dióxido de titânio (TiO₂) e peróxido de hidrogênio (H₂O₂) foram testados como agentes de degradação. Os ensaios de toxicidade foram realizados utilizando o crustáceo *Artemia salina* como organismo teste, avaliando-se a concentração letal por meio de ajuste ao modelo sigmoide. Observou-se que a toxicidade frente aos organismos teste diminuiu cerca de 50% para ambos os processos testados. O ajuste sigmoide mostrou-se adequado para a determinação da concentração letal, com R² acima de 0,999.

PALAVRAS-CHAVE: Aumento de Capacidade, Melhoria da Qualidade, Água com Alcalinidade, Coagulante Adequado, Auxiliares de Floculação.

INTRODUÇÃO

Os retardantes de chama (RFs) são compostos utilizados como aditivos em diversos materiais (madeira, plásticos, têxtil), fornecendo proteção ao fogo quando aplicado à superfície do material (EFRA, 2007). Entre os retardantes de chama, os compostos organosforados causam preocupação em relação ao meio ambiente e à saúde humana; um dos compostos mais importantes nessa classe é o tributilfosfato (TBP), que possui características genotóxicas e mutagênicas.

Para o tratamento destas substâncias, e modo que elas não gerem impactos ambientais e efeitos nefastos à saúde humana, houve um crescimento na demanda de tecnologias transformadoras, que é o caso dos Processos Oxidativos Avançados (POAs) (AQUINO *et al.* 2019). Nos POAs, o composto não é apenas transferido de fase, mas destruído e transformado em dióxido de carbono, água e ânions inorgânicos não tóxicos ou de menor potencial tóxico (Aquino et al., 2019). Entre os POAs, o processo de degradação fotoquímica UV/TiO₂ gera radicais hidroxila •OH com a fotólise do semicondutor TiO₂ por meio da irradiação UV, que degradam a matéria orgânica e formam substâncias mais elementares e menos nocivas. Outros métodos de oxidação em compostos orgânicos têm sido utilizados, como os processos de degradação fotoquímica por oxidantes fortes, como o peróxido de hidrogênio (H₂O₂) (ROCHA *et al.* 2013).

Para verificar se o POA degradou de maneira eficiente os compostos organofosforados e não formou intermediários mais tóxicos, pode-se utilizar testes de toxicidade aguda com organismos vivos após o

tratamento. Como opção de baixo custo e de fácil manipulação, utiliza-se com frequência como organismo teste o crustáceo Artemia sp, já que este é acessível no mercado de peixes ornamentais e aquários e continuam viáveis para análise por anos, em condições adequadas (MEYER *et al.* 1982). Este trabalho teve como objetivo quantificar a concentração letal para 50% dos organismos (CL50) para amostras do retardante de chamam Tributilfosfato (TBP) antes e após tratamento fotoquímico e fotocatalítico pelos sistemas H₂O₂/UVC e TiO₂/UVC. A obtenção do CL₅₀ foi feita a partir de ajuste em função sigmoide.

MATERIAIS E MÉTODOS

Realizou-se a fotodegradação de TBP (Sigma Aldrich, 98%) 1 mg.L $^{-1}$ em reator fotocatalítico em batelada (7,0 x 5,5 cm), contendo lâmpada UVC germicida (Ecolume, 30 W) pelo período de 6 horas sob agitação magnética. Para o sistema H_2O_2/UVC , utilizou-se uma concentração determinada por cálculos estequiométricos. Utilizou-se uma dose de 0,3 mg.L $^{-1}$ de fotocatalisador no sistema TiO_2/UVC .

Amostras de TBP foram analisadas por HPLC (Acquity, Waters, EUA) acoplado a um espectrômetro de massa quadrupolo simples (SQ Detector 2, Waters, EUA) equipado com ionização por eletrospray (ESI). A fonte de ionização operou com voltagem capilar de 3,5 kV, voltagem de cone de 25 V, temperatura de dessolvatação de 150 °C e fluxo de gás de 550 L/h. As amostras de TBP foram quantificadas de acordo com seu peso molecular utilizando o modo de registro de íons selecionados (SIR).

A toxicidade do TBP antes e após o tratamento foi avaliada utilizando-se náuplios de Artemia salina em contato com água do mar (coletada na praia de Casa Caiada, Olinda-PE, durante o período das 8:00-10:00 da manhã). Foi realizado um ensaio em branco apenas com água do mar. Os testes foram feitos em quintuplicata, utilizando 10 náuplios para cada réplica. As soluções antes e após o tratamento por POAs foram diluídas nas proporções de 1:2, 1:4, 1:8, 1:16 e 1:32. O tempo de exposição aos organismos foi de 24h. A partir da contagem de organismos mortos, foi possível obter a taxa de letalidade das amostras em diferentes concentrações. A concentração letal para 50% dos oganismos (CL₅₀) foi obtida a partir de um ajuste em uma função sigmoide não linear (Equação 1), a partir do software OriginPro 9.

$$letalidade = \frac{1}{1 + e^{CL = 0}}$$
 (1)

RESULTADOS

Observou-se a partir dos ensaios de degradação de TBP que, após 6 horas de reação, atingiu-se uma eficiência de 70% e 61% para os processos H₂O₂/UVC e TiO₂/UVC, respectivamente. Isso mostra que o processo homogêneo foi levemente superior em termos de degradação do contaminante, o que pode ser explicado pela radiação de alta frequência aplicada (UVC). A faixa de comprimento de onda que permite a quebra da molécula de peróxido de hidrogênio em radicais hidroxila corresponde à faixa da radiação UVC, o que garante a oxidação efetiva das moléculas orgânicas. Outro ponto importante é que, no processo heterogêneo, radicais de menor poder oxidativo (como hidroperoxila e superóxido) podem ser formados a partir da ativação do óxido semicondutor, competindo pela oxidação das moléculas com os radicais hidroxila.

A concentração letal para 50% dos organismos (CL_{50}) foi calculada por meio de uma relação entre a concentração de TBP e a porcentagem de letalidade das amostras antes e após tratamento por POAs. A relação gráfica foi obtida pelo programa Origin 9, com ajuste no modelo sigmoide apresentado na Figura 1.

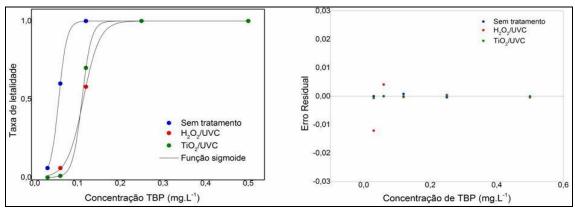


Figura 1: Ajuste sigmoide para a letalidade de TBP antes e após a aplicação de Processos Oxidativos Avançados.

Nos ensaios em branco, foi observada sobrevivência de 100% dos organismos em todas as réplicas. O valor do CL₅₀ para cada substância é baseado na relação entre a concentração de um composto químico e o efeito tóxico causado por ele no organismo de teste (COSTA *et al.* 2008). Verifica-se que, com a degradação do contaminante pelos processos H₂O₂/UVC e TiO₂/UVC, houve um aumento em cerca de 50% do valor da concentração letal (CL₅₀) para o TBP. Pode-se afirmar que ambos os tratamentos por POAs foram capazes de diminuir a toxicidade para os organismos teste, pois foi necessária uma amostra pós tratamento em maior concentração para atingir a mortalidade de 50% da população de náuplios em relação ao contaminante sem tratamento.

Com isso, sugere-se que os radicais hidroxila gerados pós aplicação de TiO_2/UVC e H_2O_2/UVC conseguiram oxidar a molécula de TBP em moléculas menores, e que esses compostos intermediários formados não apresentaram maior toxicidade nas amostras. A Tabela 1 mostra os valores de CL_{50} e os parâmetros do ajuste sigmoide realizado para os testes.

Tabela 1: Concentração letal para 50% dos organismos e parâmetros de ajuste na função sigmoide para a toxicidade de TBP.

signioue para a toxicidade de 1D1:			
Sistema	CL ₅₀ (mg.L ⁻¹)	\mathbb{R}^2	pН
Sem tratamento	0,056	0,999	4,86 x 10 ⁻⁷
H ₂ O ₂ /UVC	0,114	0,999	8,19 x 10 ⁻⁵
TiO ₂ /UVC	0.111	0.999	2.18 x 10 ⁻⁷

Na Tabela 1, o coeficiente de determinação alto (R² > 0,999) e o baixo erro residual confirmam a adequação do ajuste. Esse resultado está de acordo com o exposto na literatura, em que comportamento não-linear do tipo sigmoide representa sistemas concentração-resposta para organismos biológicos em ensaios de toxicidade aguda (LACERDA *et al.* 2014).

CONCLUSÕES

Com base no trabalho realizado, concluiu-se que:

A partir dos ensaios realizados, foi possível verificar uma diminuição de cerca de 50% na toxicidade aguda da solução de TBP após os tratamentos pelos processos H_2O_2/UVC e TiO_2/UVC . Esse é um indicativo de que a degradação do contaminante produziu compostos intermediários menos tóxicos do que a solução inicial de TBP. O modelo sigmoide mostrou-se adequado para os ajustes dos dados de taxa de letalidade obtidos para as soluções antes e após os tratamentos, com R^2 acima de 0,999. Os resultados apresentados mostram que os POAs homogêneos e heterogêneos testados são capazes de diminuir a letalidade do TBP exposto aos organismos testados.

REFERÊNCIAS BIBLIOGRÁFICAS

- AQUINO, R. V. S.; BARBOSA, A. A.; CARVALHO, R. F.; SILVA, M. G.; NASCIMENTO JUNIOR, W. J.; SILVA, T. D.; SILVA, J. P.; ROCHA, O. R. S. Degradation study of tris(2-butoxiethyl) phosphate with TiO₂ immobilized on aluminum meshes employing artificial neural networks. Water Science and Technology, v. 80, p. 1163-1173, 2019.
- 2. COSTA, C. R.; OLIVI, P.; BOTTA, C. M. R.; ESPINDOLA, E. L. G. A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. **Química Nova**, v. 31, p. 1820-1820, 2008.
- 3. EFRA European Flame Retardants Association. Introductions of Flame Retardants, 2007 Disponível em <.http://www.cefic-efra.com>. Acessado em: 25.05.2023.
- LACERDA, A. C. F.; GUSMÃO, G. A.; HAMADA, N. Tests of chronic and acute toxicity of crude oil on larvae of *Chiranomus kiiensis* Tokunaga (díptera: Chinoromidae). Brazilian Journal of Biology, v. 74, p. 70-77, 2014.
- MEYER, B. N.; FERRIGNI, N. R.; PUTNAM, J. E.; JACOBSEN, L. B.; NICHOLS, D. E.; MCLAUGHLIN, J. L. Brine shrimp, a conveniente general bioassay for active-plant constituents. Planta Medica, v. 45, p. 31-34, 1982.
- ROCHA, O. R. S.; PINHEIRO, R. B.; DUARTE, M. M. M. B.; DANTAS, R. F.; FERREIRA, A. P.; BENACHOUR, M.; SILVA, V. L. Degradation of the antibiotic chloramphenicol using photolysis and advanced oxidation process with UVC and solar radiation. **Desalination and Water Treatment**, v. 51, p. 7269-7275, 2013.